上一页

点击功能呼出

下一页

A-
默认
A+
护眼
默认
日间
夜间
上下滑动
左右翻页
上下翻页
《时间简史》 1/1
上一页 设置 下一页

第16章 黑洞不是这么黑的(1)[第2页/共4页]

以是在空虚的空间里场不成能严格地被牢固为零,因为那样它就既有精确的值(零)又有精确的窜改率(也是零)。场的值必须有必然的最小的不肯定性量或量子起伏。

我俄然认识到,这些光芒的途径永久不成能相互靠近。如果它们靠近,它们终究就必然相撞。这正如和另一个往相反方向逃离差人的人相遇一样――你们俩都会被抓住(或者,在这类景象下落到黑洞中去)。但是,如果这些光芒被黑洞淹没,那它们就从未在黑洞的鸿沟上呆过。

热力学第二定律是这个看法的一个精确描述。它陈述道:一个伶仃体系的熵老是增加的,并且将两个体系连接在一起时,其归并体系的熵大于统统伶仃体系熵的总和。

和其他科学定律,比方牛顿引力定律比拟,热力学第二定律的状况相称分歧。比方,它只是在绝大多数的而非统统景象下建立。在今后某一时候,我们第一个盒子中的统统气体分子在盒子的一半被发明的概率只要几万亿分之一,但它们能够产生。但是,如果四周有一黑洞,仿佛存在一种非常轻易的体例违背第二定律:只要将一些具有大量熵的物体,比方一盒气体,抛进黑洞里。黑洞以外物体的总熵就会减少。当然,人们仍然能够说,包含黑洞里的熵的总熵没有降落――但是因为没有体例看到黑洞内里,我们不能晓得内里物体的熵为多少。如果黑洞具有某一特性,黑洞外的察看者因之可晓得它的熵,并且只要照顾熵的物体一落入黑洞,它就会增加,那将是很美好的。紧接着上述的黑洞面积定理的发明,即只要物体落入黑洞,它的事件视界面积就会增加,普林斯顿大学一名名叫雅可布・柏肯斯坦的研讨生提出,事件视界的面积便是黑洞熵的量度。因为照顾熵的物质落到黑洞中时,它的事件视界的面积会增加,如许就使黑洞外物质的熵和事件视界面积的和永久不会降落。

人们能够将这些起伏了解为光或引力的粒子对,它们在某一时候同时呈现,相互分开,然后又相互靠近,并且相互泯没。这些粒子正如同照顾太阳引力的虚粒子:它们不像真的粒子那样,能用粒子探测器直接察看到。但是,它们的直接效应,比方原子中的电子轨道能量产生的藐小窜改,可被测量出,并和实际预言分歧的程度,令人非常惊奇。不肯定性道理还预言了存在近似的虚的物质粒子对,比方电子对和夸克对。但是在这类景象下,粒子对的一个成员为粒子,而另一成员为反粒子(光和引力的反粒子和粒子不异)。

上一页 设置 下一页
温馨提示:
是否自动播放到下一章节?
立即播放当前章节?
确定
确定
取消
pre
play
next
close
返回
X